九年级《反比例函数》说课稿是针对九年级学生讲解反比例函数相关内容的稿件,主要内容包括反比例函数的概念、性质、应用等。说课稿用于阐述教学思路和教学逻辑,以便让听者了解讲课者对课程的理解和教学能力的体现。以下是有关于九年级《反比例函数》说课稿的有关内容,欢迎大家阅读!
第1篇:九年级《反比例函数》说课稿
一、教材分析
本节是《反比例函数》的小结与复习课。函数本身是数学学习中的重要内容,而反比例函数又是基础函数。反比例函数是继一次函数学习之后又一类新的函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间的关系的处理奠定了基础。通过本节课对本章知识的复习,让学生进一步体会反比例函数的意义,了解反比例函数的图象,能根据图象和解析式进一步探索并理解反比例函数的性质,能用反比例函数解决某些简单的实际问题。因此,本节课的学习是学生对函数的概念、图象与性质一个再知和整合的过程。
二、教学目标分析
根据课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。因此把教学目标确定为:
1、知识与能力目标:
(1)复习反比例函数概念、图象与性质的知识点,通过相应知识点的配套练习加深学生对反比例函数本章知识的理解与掌握。
(2)能够根据问题中的条件确定反比例函数的解析式,会画出它的图象,并根据问题确定自变量的取值范围及增减性。
2、过程与方法目标:通过对相关问题的变式探究,正确运用反比例函数知识,进一步体验形成解决问题的一些基本策略,发展实践能力和创新精神。
3、情感态度与价值观目标:创设教学情景,鼓励学生主动参与反比例函数复习活动,激发学习兴趣,获得问题解决后的乐趣,继续渗透数形结合等数学思想方法。
三、教学重点难点分析
由于本节课的学习是学生对函数的概念、图象与性质一个再知和整合的过程。可以帮助学生形成解决问题的一些基本策略,提高分析问题,解决问题的能力和发展他们的创新精神。所以我确定本节课的教学重点是进一步掌握反比例函数的概念、图像、性质并正确运用。教学难点是反比例函数性质的灵活运用。数形结合思想的应用。
四、教学方法分析
根据教材特点及学生的年龄特点、心理特征和认知水平,我采用合作交流、集体探究的方法启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨论——交流——总结”的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。
五、学法指导
本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙
六、教学设计的基本思路
(一)知识梳理:主要说明本章的内容由反比例函数的意义;反比例函数的图象与性质;利用反比例函数解决实际问题三大块组成。
(二)合作交流,解读探究
1、复习反比例函数概念及其等价形式。并设计了相应的配套练习:判断反比例函数并指出其中的K值;结合物理知识写函数关系式,体会数学知识来源于生活,考查学生对反比例函数系数及自变量的指数的掌握情况。
2、复习反比例函数的图象与性质,并用来解决问题。也设计了相应的配套练习:根据K值确定反比例函数所在象限及其一支(X>0)的增减性,根据函数关系式和给定自变量(函数值)求函数值(自变量的值);由图像性质和K值的关系确定m的取值范围;用待定系数法求反比例函数解析式;根据函数增减性及所给函数图像上点的横坐标判断个点函数值的大小,难度较大,学生不易掌握。
3、综合运用:给出一次函数的图像y=ax+b与反比例函数y=相交的示意图及交点M(2,m)N(-1,-4)两点。求反比例函数和一次函数的解析式并根据图像写出反比例函数的值大于一次函数的值的X的取值范围。此类题目在中考中常见。是一次函数和反比例函数的综合应用,主要用数形结合思想和待定系数法求解,可以提高学生的观察、分析、综合应用及合情推理能力。
(三)随堂练习:贯穿于整个课堂教学中,具体内容见课件。
(四)归纳总结:
由学生总结本节课所学习的主要内容:
1、反比例函数的意义;
2、反比例函数的图像与性质;3数形结合思想
让学生通过知识性内容的小结,把课堂所学的知识尽快化为学生的`素质;通过数学思想方法的小结,使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。
(五)布置作业
(六)课后反思:
1、在本课时的师生互动过程中,积极创造条件和机会,让学生发表见解,使他们有成功的学习体验,激发他们的学习兴趣,增强他们的自信心,提高他们学习的主动性。
2、尽量体现以学生为主体,教师为主导的原则,在轻松愉快的氛围中,顺利地“消化”本节课的内容。同时,让学生体会到“理论来自于实践,而理论又反过来指导实践”的哲学思想。从而培养和提高学生分析问题和解决问题的能力。
3、即时训练——巩固新知。为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,把配套练习中的习题熔入即时训练题中,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。
4、存在的问题:学生配合不够积极,积极回答问题的学生少,学生的积极性没有充分调动起来;对中下学生关注的太少;教师说的多,学生没有充分的时间讨论交流;课堂教学内容稍多,在规定时间内没有完成教学任务。
第2篇:九年级《反比例函数》说课稿
一.说教材
《反比例函数的应用》是苏科版八年级下册第九章第三节的课题,是在前面学习了反比例函数、反比例函数的图象和性质的基础上的一节应用课。这一节的内容符合新课程理念,课程要面向生活世界和社会实践。反比例函数的知识在生产和实际生活中经常用到,掌握这些知识对学生参加实践活动,解决日常生活中的实际问题具有实用意义。通过反比例函数的应用使学生明确函数、方程、不等式是解决实际问题的三种重要的数学模型,它们之间有着密切联系,并在一定的条件下可以互相转化。在教学过程中,还渗透着建模思想、函数思想、数形结合思想,这些思想也为后面学习二次函数的应用奠定了基础。
二.说目标
“反比例函数的应用”是反比例函数及其图象中的一个重要的内容,它是前面几节课的综合应用。由于函数知识在日常生活中有重要的实用意义,根据教学大纲的明确规定并结合素质教育要求,通过本节课的教学达到以下目标:
1、知识目标
使学生了解反比例函数是日常生活和生产实际中应用十分广泛的数学模型,使学生掌握生活中有一类两变量的乘积为定值的实际问题可归结为反比例函数问题来解决的思想方法。
2、能力目标
①使学生能模仿“利用函数解决实际问题的基本步骤”来解决简单的实际问题;初步养成自己提出或构建数学模型的能力;提高综合运用函数、方程、不等式知识解决实际问题的能力。
②引例通过开放性的问题,作业中通过编题培养学生的发散思维能力。
3、情感目标
①通过本节知识的学习,使学生明确,应用反比例函数的知识可以解决生活中的许多问题,从而进一步培养学生热爱数学,进而努力学好数学的情感。
②使学生树立事物是普遍联系的辩证唯物观。
③引例中让学生具有一方有难八方支援的献爱心精神。
三.说教学重难点
我认为本节课的教学重点是把一类实际问题归结为反比例函数问题来解决,这是因为:
1.反比例函数是日常生活和生产实践中应用十分广泛的数学模型,它真正体现了数学知识来源于生活又应用于生活的重要意义。
2.“利用反比例函数解决实际问题的基本步骤”是通过对例题的解题过程进行归纳总结而得到的结论。它遵循了从“具体到抽象再到具体”的认知规律,蕴含了从“特殊到一般再到特殊”的推理方法。对今后学习数学有着重要的指导意义。
我认为本节课的教学难点是从实际问题中抽象出数学问题,建立数学模型,注意在实际问题中函数自变量的取值范围,用数学知识去解决实际问题。
在突破难点时,我注意:
1.使学生熟练掌握反比例函数的图象和性质,教学生学会“数形结合”的研究方法,它直观、形象、好理解。
2.密切联系实际问题,注意观察生活。
四.说教学方法
(一)教法分析
根据课程标准,当学生面对实际问题时,能主动尝试着,从数学的角度运用所学的知识和方法寻求解决问题的策略。对于例1,由于学生初次接触反比例函数的应用,我采用的是教师引导法,降低难度.其余,我都采用的教学方法是问题教学法,让一个个有阶梯的问题充满课堂教学,时时启发学生的思维,这种教学方法符合以下教育规律:
1、遵循由浅入深,由特殊到一般再到特殊,体现掌握知识与发展智力相统一的规律。
2、创设问题情境,教师不断启发引导学生思考,由易到难,化繁为简,体现教师的主导作用与学生主体作用相结合的规律。
(二)学法分析
这种教学方法实际上也教给学生一种学习方法,使得学生学会观察生活,注意生活中的实际问题,学会自己探求知识;培养学生善于观察思考的习惯,鼓励学生将所学知识应用到生活中去。学会寻找、发现,学会归纳总结,逐步掌握主动获取知识的本领。
(三)教学手段
采用多媒体教学,通过直观演示图象,更好地教会学生“数形结合”的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。
五.说教学过程的设计
(一)创设情景,提出问题
“问题是数学的心脏”(P.R.Halmos语),是数学知识、能力发展的生长点和思维的动力。在课堂教学的开始,我创设了这样一个情景:
去年下半年,励才中学初一(2)班黄晶晶同学的爸爸诊断为肝癌,家中又突发一场大火,真是祸不单行,一下急需的10万元款从何而来,关键时刻,群众积极响应镇政府的号召,一方有难八方支援,结果,捐款总额比预期的还要理想。如果你是镇政府领导,你除了积极做好思想动员工作之外,能不能运用反比例函数的知识对即将发动群众献爱心进行策划呢?
为了很好的解决这一问题,我们共同来学习以下两道题目:
设计意图:由学生身边的事出发,激起学生的爱心,为积极筹划这个活动,带着对数学的求知欲,进入例题的学习。
(二)范例设计
学习例1:
小明家离学校1500m,某天小明上学时,发现时间不多了,就加快了行车速度,①小明行车平均速度(υ)与所用时间(t)有怎样的函数关系?②如果所剩时间为15分钟,那么小明的平均速度至少达到多少才能按时到校?③为了安全起见,小明的平均速度最快达到90m/min,他至少要留多长时间,才能安全到校?④画出函数的图象。
例1中,出现了一个常量,两个变量;我们看,平均速度(υ)随所用时间(t)的变化而怎样变化?是否为反比例函数关系?若是可用反比例函数的有关知识去解决问题。
②、③两问实际上就是函数的特殊情形,一是已知自变量,求函数值;一是已知函数值,求自变量。从这两问,再引导学生探求自变量的取值范围。④问中,指导学生画图,分析问题(多媒体展示函数图象)。
设计意图:这道题是课本例1的改编,更换背景的目的是为了更贴近学生的生活,以更好地激发学生的求知欲。后面的例2也是在课本例2的基础上添加了一个背景,目的也是如此。
由于学生初次接触反比例函数的应用问题,我选择教师引导法。引导学生联系反比例函数图象及性质建立反比例函数模型,渗透函数思想,数形结合思想。在画图象前,已引导学生探究自变量的取值范围,这样就化解了教学难点。
小华同学的爸爸在某自来水公司上班,现该公司计划新建一个容积为4×104m3的长方体蓄水池,小华爸爸把这一问题带回来与小华一起探讨:
①蓄水池的底面积S(m2)与其深度h(m)有怎样的函数关系?
②如果蓄水池的深度设计为5m,那么蓄水池的底面积应为多少平方米?
③由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长和宽最多只能分别设计为100m和60m,那么蓄水池的深度至少达到多少才能满足要求?
这是个几何体积问题的应用题,我通过设置以下问题,引导学生观察思考,逐步分析,最后通过建立函数这种数学模型解决问题。
问题(1):这是一个几何体积问题,问题中包含有哪些量?哪些是常量?哪些是变量?
问题(2):在容积不变的情形下,蓄水池的`底面积S(m2)与其深度h(m)有怎样的函数关系?为什么?写出关系式。
问题(3):函数关系式中自变量的取值范围如何确定?从而决定函数值的取值范围又是怎样?
问题(4):能否画出函数的图象?(指导学生画图,分析问题,多媒体展示函数图象。)
问题(5):题中②、③两问能否利用图象来解?如何解?
问题(6):题中②、③两问除了利用图象来解之外,是不是也可以利用方程解或不等式解?
设计意图:对例2采用了设计问题系列,启发学生思考,联系旧知识建立函数模型,解决了自变量的取值范围从而确定了函数值的取值范围,渗透了函数的思想,让学生初步了解函数模型的建立方法。最后渗透一题多解方法,培养学生思维的灵活性,渗透“函数——方程——不等式”思想和“数形结合”的研究方法,引导学生学会解题后的再思考,将知识系统化。
(三)反馈练习
“学数学而不练,犹如入宝山而空返”(华罗庚语),为了让学生更好地学会反比例函数知识的应用,我设计了例2的后续问题,让学生练习。使课堂教学能前后连贯。
例2中的新建蓄水池工程需要运送的土石方总量为4×104m3,某运输公司承担了该项工程运送土石方的任务。
①运输公司平均每天的工程量υ(m3/天)与完成运送任务所需要的时间t(天)之间有怎样的函数关系?
②运输公司共派出20辆卡车,每辆卡车每天运土石方100m3,则需要多少天才能完成该任务?
可以通过此类题反馈本节所学,检查学生是否掌握了“数形结合”的研究方法,及时加强对数据和信息的处理能力。
(四)回到引例,前后呼应
①现在大家能否利用我们刚掌握的知识来策划发动群众献爱心呢?
②如果每人平均捐款100元,那么需要发动多少人捐献。根据实际生活水平,每人平均捐款只能达到50元,那么至少要发动多少人捐献?发动人数与每人平均捐款数成怎样的函数关系?当每人平均捐款数一定时,捐款总额与发动的人数成怎样的函数关系?
设计意图:让学生回到课堂之初的问题中,解决问题,使整个课堂教学浑然一体,体验学习数学的乐趣。
(五)收获
教师启发学生思考回答下列问题,再由教师补充归纳本节所学知识内容。
(1)通过本节反比例函数的应用的学习,我们掌握了生活中有一类两变量的乘积为定值的实际问题可归结为反比例函数问题来解决的思想方法。
(2)初步学会了数学建模的方法。
(3)树立了事物是普遍联系的辩证唯物观。
(六)作业布置
根据新课程理念,人人学有价值的数学,不同的人在数学上有不同的发展。我的作业布置分必做题和选做题两部分,其中选做题是一道自编题,我的目的是既巩固所学知识,又复习了旧知,同时还能让学生体验一下做老师的愉悦。
(4)必做题:①看课本例1、例2。
②做课本习题9.3
(5)选做题:
4月6日,姜堰溱湖湿地公园游人如织,来自世界各地的游人蜂拥而至,“小数学”利用早上上学前的时间,来到公园门口,他发现……。请你利用我们学过的知识,编两题,要求分别能利用正比例函数和反比例函数解决问题。
收获
结束语:
教学过程是一个不断生成的过程,在教学过程中,我将根据学生实际情况,不断调整我的教学内容,以使学生在课堂上的思维永远处于一种亢奋状态。
说课对我来说是新事物,今后我将进一步说好课,并希望各位专家领导对本节课提出宝贵意见。
谢谢各位!
第3篇:九年级《反比例函数》说课稿
一、教材分析
反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初三学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。
二、教学目标分析
根据课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。因此把教学目标确定为:
1.进一步熟悉作函数图象的.主要步骤,会作反比例函数的图象.
2.体会函数的三种表示方法的互相转换.对函数进行认识上的整合.
3.逐步提高从函数图象获取信息的能力,探索并掌握反比例函数的主要性质.
(二)能力训练要求
通过学生自己动手列表、描点、连线,提高学生的作图能力;通过观察图象,概括反比例函数的有关性质,训练学生的概括、总结能力.
(三)情感与价值观要求
让学生积极参与到数学学习活动中,增强他们对数学学习的好奇心与求知欲。
三、教学重点难点分析
本堂课的重点是:
1、画反比例函数的图象;并从函数图象中获取信息。
2、探索并研究反比例函数的主要性质。
本堂课的难点是:反比例函数的图象特点及性质的探究。
为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。
第4篇:九年级《反比例函数》说课稿
各位评委,你们好:
我今天说课的内容是华东师大版八年级下册第十八章第四节第一课时反比例函数。
一、说教学内容:
(一)、本课时的内容、地位及作用:
本课内容是华东师大版八年级(下)数学第十八章《函数及其图象》第四节《反比例函数》的第一课时,是继一次函数学习之后又一类新的函数——反比例函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间关系的处理奠定了基础。函数本身是数学学习中的重要内容,而反比例函数则是基础函数,因此,本节内容有着举足轻重的地位。
(二)本课题的教学目标:
教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标:
1、知识目标
(1)、通过对实际问题的探究,理解反比例函数的意义。
(2)、体会反比例函数的不同表示法。
(3)、会判别反比例函数。
2、能力目标
(1)、通过两个实际问题,培养学生勤于思考和分析归纳的能力。
(2)、在思考、归纳等过程中,发展学生的合情说理能力。
(3)、让学生会求反比例函数关系式
3、情感目标
(1)通过已有的知识经验探索的过程,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。
(2)理论联系实际,让学生有学有所用的感性认识。
4、本课题的重点、难点和关键:
重点:反比例函数的意义;
难点:求反比例函数的解析式;
关键:如何由实际问题转化为数学模型。
二、说教学方法:
本课将采用探究式教学,让学生主动去探索,并分层教学将顾及到全体学生,达到优生得到培养,后进生也有所收获的效果。同时在教学中将理论联系实际,让学生用所学的知识去解决身边的实际问题。
由于学生才第一次接触函数,对一次函数尽管已经学习了,但对函数这部分内容不是十分熟练。因此,在教这节课时,要注意和一次函数,尤其是正比例函数与反比例函数的类比。引导学生从函数的意义、自变量的取值范围等方面辨明相应的差别,在学生探索过程中,让学生体会到在探索的途径和方法上与一次函数相似。
对于所设置的两个问题为学生所熟悉,尽量贴近学生生活,或者进入学生生活的圈子里,让学生感受到亲切、自然,激发学生的学习兴趣,提高学生思考问题的积极主动性和解决问题的能力,从而培养对数学学科的浓厚兴趣,使部分学生由不爱学变得爱学。让学生真正体会到:生活处处皆数学,生活处处有函数。
三、说学法指导:
课堂,只有宝贵的四十五分钟,有相当一部分学生很难驾驭,身不由已,注意力不能集中。针对这种情况,故意设置两个贴近生活的实例,让学生展开想象的翅膀,主动思考,相互探讨,学生互动,师生互动。在想象与探讨的互动中,迸发出思想的火花,寻求问题的答案――反比例函数的意义。
为了让学生对反比例函数的意义牢牢掌握和深刻理解,启发学生回忆正比例函数并与之相类比,从内容到形式,学生自主地体会出反比例函数的真正内涵。
在本课时的教学双边活动过程中,抓住初中学生的心理生理特点,尽量运用生动的语言,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。
教师要善于捕捉学生的反馈信息,并能立即反馈给学生,矫正学生的学法和知识错误。力求体现以学生为主体,教师为主导的原则,在轻松愉快的氛围中,顺利地“消化”本节课的内容。同时,让学生体会到理论来自于实践,而理论又反过来指导实践的哲学思想。从而培养和提高学生分析问题和解决问题的能力。
四、说教学程序:
(一)复习引入:
由于学生所学过的一次函数、正比例函数等概念时间已较长,所以在创设情境时对这些知识加以复习,以换取学生以有知识的记忆。回忆师生共同回忆前一阶段所学知识,同时启开新的课题——反比例函数(教师板书)
设计意图:旧知的回顾,为了新知的探索作好铺垫)
(二)创设情景,激发热情
用两个最贴近学生生活实例引出反比例函数的概念,教师发挥主导作用,启发学生思考。
问题1:
小华的爸爸早晨骑自行车带小华到15千米的镇外去赶集,回来时让小华乘公共汽车,用的时间少了。假设两人经过的路程一样,而且自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系。
师问:
(1)、在这个故事中,有几种交通工具?(生答:两种)
(2)、两种交通工具的正常行驶速度一样吗?来去的路程一样吗?时间呢?(生答:不一样、一样、不一样)
师生共同探究,时间的变化是由速度的变化所引起,设小华乘坐交通工具的速度是v千米/时,从家里到镇上的时间是t小时。因为在匀速运动中,时间=路程÷速度,则有t=15/v
你从这个关系式中发现了什么?
教师分析变量t与v之间的关系:
①路程一定时,时间t就是速度v的反比例函数。即速度增大了,时间变小;速度减小了,时间增大。
②自变量v的取值是v﹥0
问题2:
学校校外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场。设它的一边长为x(米),求另一边的长y(米)与x的函数关系式。
仿上一问题让学生分析变量关系,然后教师总结:依矩形面积可得
xy=24即y=24/x
你从这个关系式中发现了什么?
教师指出,问题2中的的关系与问题1中的一样,即:
①当矩形的面积一定时,矩形的一边增大了,则另一边减小;若一边减小了,则另一边增大。
②自变量x﹥0。
设计意图:列举生活中的两个实例,让学生感受数学与生活的紧密联系。主要是帮助学生理清反比例函数的意义,掌握在不同的已知条件下,确定反比例函数的表达式。
(三)观察归纳——形成概念
在这一环节中,为了突出重点,我通过问题“在上面我们所得到的关系式有没有共同点”和“这一共同点能不能用一个统一的表达式表示”引导学生猜想,然后让学生分组交流讨论
由实例,即y=15/x和y=24/x两个式子教师引导学生概括总结出本课新的知识点:
上述两个函数都具y=k/x的形式,一般地,形如y=k/x(k是常数,k不为0)的函数叫做反比例函数。(强调k≠0)
教师对反比例函数的定义加以说明:
1、正比例函数为y=kx(k是常数,且k≠0);反比例函数可化为xy=k,k是常数,且k≠0。
(提醒学生:要注意常数的’位置,并可利用它来判别函数的种类。)
2、反比例函数的解析式又可以写成:y=k/x=kx–1(k是常数,k≠0)
3、要求出反比例函数的解析式,只要求出k即可。
(四)讨论研究——深化概念
在这里我给出两道习题让学生练习
1、下列函数关系中,X均表示自变量,那么哪些是反比例函数?每一个反比例函数的K的值是多少?
y=0、4/xy=x/2xy=2y=5x–1
学生自由组合思考回答后教师给出正确答案。
教师分析思路:确定函数是否为反比例函数,就是看它们的解析式经过整理后是否符合y=k/x(k是常数,k≠0)
2、当m为何值时,函数y=4/x2m–2是反比例函数,并求出其函数解析式。(本题交给学生,教师矫正)
教师给出正确的解法:由反比例函数的定义可知:2m-2=1,即m=3/2。所以反比例函数的解析式为y=4/x。
设计意图:学生通过对上面两道题的观察、讨论、交流后更进一步理解和掌握反比例函数的概念。
(五)随堂练习
教科书P50练习第1题
(六)总结反思——提高认识
由学生总结本节课所学习的主要内容:
A、反比例函数的意义;
B、反比例函数的判别;
C、反比例函数解析式的求法。
设计意图:让学生通过知识性内容的小结,把课堂教学传授的知识尽快化为学生的素质;通过数学思想方法的小结,使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。
(七)布置作业
教科书P52习题18、4第2、4题
(作业的布置能帮助学生巩固知识,强化对知识的理解和应用)
(八)板书设计
黑板分为左、中、右三部分,中间与右边用于教师板书课本例题等,写满后擦去更新。左边用于板书以下内容:
形如y=k/x(k是常数,k≠0)的函数叫反比例函数。
要求反比例函数的解析式,可通过待定系数法求出k值,即可确定。
第5篇:九年级《反比例函数》说课稿
各位评委,你们好:
一、说教学设计意图
首先由学生尝试举出实际生活中某两个量出租反比例关系的例子,自然地引入利用所学的反比例函数来解决实际问题,在数学课上引用一个用“杠杆规律”的实际问题,一下子抓住学生的好奇心理。激发了他们的学习兴趣。利用了公元前3世纪古希腊科学家阿基米德发现的“杠杆定律”中力与力臂两个量的反比关系,将他们运用到用数学来解决问题,激发学生求知热情。也培养他们科学探索精神。
实际问题向数学问题他转化是解决问题的关键。教师有理有据地引学生通过反比例函数模型实现这一目的。让学生体会其中的转化思想,逐步掌握转化的方法。函数模型没有变,但两个量的角色发生变化,体会变与不变的思想。通过这种方法的学习,让学生学会归纳、总结所学的知识。使学生初步形成运用反比例函数解决实际问题的意识打好基础。
通过以学生身边熟悉的星海湖水利工程为实际问题创设练习题,让学生进一步加深对反比例函数的运用和理解,更深层次形成反比例函数模型来解决实际问题的意识,巩固和提高所学知识。给学生足够的时间和空间,为他们创造展示能力和应用所学知识的机会。
最后,通过小结,使学生把所学知识进一步内化、系统化。
二、说内容
本章的反比例函数的内容属于《全日制义务教育数学课程标准——数学》是在已经学习了平面直角坐标系和一次函数的基础上,再一次进入函数范畴。反比例函数是基本的函数之一,本章共分为两节,第17-2节的内容是如何用反比例函数解决实际问题或如何用反比例函数解释现实世界中的一些现象。本节课主要涉及在使用杠杆时,如果阻力和阻力臂不变,则动力是动力臂的反比例函数。
三、说目标
本节课的目标是通过“杠杆原理”等实际问题与反比例函数关系的探究,使学生能够从函数的观点来解决一些实际问题。教学重点:运用反比例函数解释生活中的一些规律,解决一些实际问题。教学难点:把实际问题利用反比例函数转化为数学问题加以解决。
四、说教法
本节课是实际问题与反比例函数的学习,我采用的教学方法是,要培养学生学习数学的积极性,并且精心引导学生通过反比例函数模型来实现解决实际问题。在这引导过程中让学生体会老师是如何将实际问题向数学问题转化的。
五、说学情
从学生初步接触函数所蕴含的“变化与对应”思想,至今已经半年有余,学生对与函数相关的概念不可避免会有些遗忘,再加上我们的学生大多数都是外来务工子女,好的习惯没有养成,所以基础知识差。特别是分析能力和计算能力。在进行活动中可能达不到预期的效果。
六、说教学安排
活动一、创设情境,引入新课目的老师提出生活中遇到的问题,请学生帮助解决,激发学生的兴趣。
活动二、分析解决问题目的与学生共同分析实际问题中的变量关系,引导学生利用反比例函数解决问题。
活动三、从函数的观点进一步激发学生学习兴趣目的是引导学生利用“杠杆规律”培养科学探索精神。
活动四、巩固练习目的通过课堂练习,提高学生运用反比例函数解决实际问题能力。
活动五、课堂小结布置作业目的归纳总结所学的知识,体会利用函数的观点解决实际问题。
第6篇:九年级《反比例函数》说课稿
各位老师:
下午好!
今天我说课的内容是人教版八年级数学下册第十七章反比例函数的图象和性质第一课时,下面我从教材分析、教学目标、教学重点、教法与学法分析、教学过程几个方面进行阐述。
一、教材分析
反比例函数的图象和性质是反比例函数的教学重点,学生需要在理解的基础上熟练运用。本节课是全章的核心,学习的主要内容是画反比例函数的图象,让学生结合实例,通过列表、描点、连线等手段经历画图、观察、猜想、思考、归纳等数学活动,并初步认识反比例函数的图象的特征,逐步明确反比例函数的直观形象,为学生探索反比例函数的图象的性质提供思维活动的空间。也为以后二次函数以及其他函数的学习奠定坚实的基础。
二、教学目标
结合我对这节课的理解和分析,制定教学目标如下:
1、通过学生在动手操作,学会在平面直角坐标系中用描点法画出反比例函数的图象;2、通过观察反比例函数图像,引导学生观察、分析、归纳反比例函数的性质,3、在学生自主探究反比例函数图像和性质的过程中,让学生体验到数学活动中充满了探索和创造,增强他们对数学学习的好奇心与求知欲。
三、教学重点难点
重点:用描点法作反比例函数的图像,并利用图像探究反比例函数的性质
难点:如何抓住特点准确画出反比例函数的图像。
四、教法与学法分析
现代教育理论中要求“要把学生学习知识当作认识事物的过程来进行教学”。针对八年级学生的认知结构和心理特征,我选择“引导探索法”。由浅到深,由特殊到一般地提出问题。引导学生自主探索、合作交流。让学生始终处于一种积极的思维、主动探索的学习状态。
根据新课标要求“培养可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生,并参与到学习活动中,鼓励学生采用自主探索、合作交流的研讨学习方式,培养学生“动手”、“动脑”、“动口”的习惯和能力,使学生真正成为学习的主人。
五、教学过程
(一)创设情境,引入新课
1、问题一:正比例函数的图像是什么形状的?我们是通过几个步骤画出来的呢?
2、问题二:反比例函数的图像又是什么形状呢?大家想知道么?
通过问题一帮助学生回忆用描点法画函数图象的方法,并认识到任何函数的图象都可以用描点法画,激活学生原有的知识,为探究反比例函数图象的画法奠定基础。问题二的提出,给学生一个想象空间,激发学生参与课堂学习的热情。
(二)类比联想,探究交流—反比例函数图像的画法
1、问题一:根据已经学过的正比例函数图象的画法,怎样画出反比例函数y=和y=–的图象?
先根据学生的回答和补充,得出画反比例函数图象的基本步骤:列表——描点——连线。再让学生分组尝试画两函数的图象。在教学过程中可以引导学生仿照正比例函数图象的的画法。
学生是首次接触到双曲线这种比较特殊函数图象,学生可能会在下面几个环节中出错:
(1)在“列表”这一环节
在取点时学生可能会取零,在这里可以引导学生结合代数的方法得出x不能为零。也可能由于在取点时的不恰当,导致函数图象的不完整、不对称。在这里指导学生在列表时,自变量x的取值可以选取绝对值相等而符号相反的数,相应的就得到绝对值相等而符号相反的对应的函数值,这样可以简化计算的手续,又便于在坐标平面内找到点。
(2)在“连线”这一环节
学生画的点与点之间连线可能会有端点,未能用平滑的线条连接,或者把两个象限内的点连起来。因而在这里要特别要强调在将所选取的点连结时,应该是“平滑曲线”,还可以引导学生通过代数的方法进一步分析反比例函数的解析式y=﹙k≠0﹚,由分母不能为零,得x不能为零。由k≠0,得y必不为零,从而验证了反比例函数的图象。当两个分支无限延伸时,可以无限地逼近x轴、y轴,但永远不会与两轴相交。从而引导学生画出正确的函数图象。为后面学习函数的性质打下基础。并给出双曲线的概念。
2、问题二:比较函y=和y=–的图象有什么共同特征它们之见有什么关系?
引导学生观察、对比、小组讨论,用自己的语言描述,由感性认识上升到理性认识,提高学生抽象概括能力。
3、巩固训练:画函数y=和y=–的图象
让学生自己动手分组完成,使学生进一步了解画反比例函数图象的基本方法,也为后面观察分析归纳出反比例函数图象的性质增加感性认识。
(三)、探索比较,发现规律—-函数图象性质
问题一:观察函数y=和y=–的图象
(1)找出反比例函数y=(k≠0)图象有哪些共同点?有哪些不同点?
(2)每个函数图象分别位于哪几个象限?由什么因素决定?
(3)在每一象限内y随x的变化如何变化?
引导学生通过对反比例函
数图象进行观察、分析,对函数图象的位置与k值符号关系的探讨,以及反比例函数的两个分支在相应象限内,y值随x值的增大(或减小)而增大(或减小)的探讨,有利于加深学生对性质的理解和掌握;学生根据对图象的观察,由得到的图象特征总结反比例函数的性质。性质:(1)反比例函数y=(k为常数,k≠0)的图象是双曲线。
(2)当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内,y的值随x值的增大而减小。
(3)当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内,y的值随x值的增大而增大。
(四)、归纳总结,
问题一:本节课学习了哪些知识?
问题二:反比例函数与正比例函数在图象分布与性质上有什么异同点?
通过列表的形式,引导学生小结反比例函数的性质并与正比例函数的图象与性质纵向对比,加深认识。通过学生自由讨论、总结、概括本章所学内容,使学生进一步理解反比例函数图象及其性质,让学生体验到学习数学的快乐,在交流中与全班同学分享。
(五)布置作业
这一环节主要是让学生加深对所学知识的理解和应用,并时刻了解学生的掌握程度。
第7篇:九年级《反比例函数》说课稿
首先是复习正比例函数的有关知识,目的是让学生回顾函数知识,为接下去学习反比例函数作好铺垫,其次给出了三个实际情景要求列出函数关系式,通过归纳总结这些函数都是反比例函数,以及反比例函数的几种形式,自变量的取值范围。又通过列表格的方法对反比例函数和正比例函数进行类比,巩固反比例函数知识。通过做一做的三个练习进一步巩固新知,但到这里用时接近25分钟,时间分配上没有很好把握为接下去没有完成教学任务埋下伏笔。接下去是要进行例1的教学,先进行的’是杠杆定理的背景知识的介绍,在学练习纸上让学生自己来独立完成三个问题,然后有学生回答,当进行到第二时,时间已经不够了,很仓促进行了小节。这节课在设计过程中多多少少忽略了学生的想法,在备课过程中,没有备好学生,站在学生的角度去设计课堂,这方面做的很不够,有些问题的处理方式不是恰到好处,思考问题的时间不是很充分;还有的学生课堂表现不活跃,这也说明老师没有调动起所有学生的学习积极性;另外课堂中指教者的示范作用体现的不是很好,,肢体语言也不够丰富,鼓励的话显得很单一,而且投影片上在新课导入的时候还出现了差错,总之,我会在以后的教学中注意以上存在的问题。综观整堂课,严谨亲切有余,但活泼激情不足,显得平铺直叙的感觉,缺少高潮和亮点;在今后的教学中要严格要求自己,方方面面进行改善!经过这节课的教学,让自己收获不少,反思更多。教学之路是每天每节课点点滴滴的积累,这条路的成功秘诀只有一个:踏实!对于我,任重而道远,我将默默前行,提高自己,让我教的每一个孩子更加优秀.
第8篇:九年级《反比例函数》说课稿
首先我复习了各知识考点,包括5个方面:
1、反比例函数的解析式(3种形式),强调系数不为0。
2、反比例函数的图像(双曲线)及画图像注意问题、在此我比较了两点法画一次函数图像、从7点法(中间为顶点)画二次函数的图像、6个点或8个点画反比例函数的图像,并从对称性说明为什么。
3、反比例函数的性质(包括位置、变化趋势即增减性、面积不变性)
4、求反比例函数解析式的方法即待定系数法;1设2代3解4答
5、反比例函数应用。
在习题的选择上注意了平时教学中学生易混点、易错点,进行了归类总结,包括有:解析式的确定、由解析式确定函数图象、K的正负问题、比较大小问题、两类函数图象的共存问题、已知两类函数函数值结合图像确定自变量的取值范围、求面积问题、面积不变性问题、交点问题、反比例与方程(组)的关系问题等。
本节课的`效果还是不错的,我认为成功之处有以下几点:
1、目标明确,课堂就有劲头。本节课,目标为理解反比例函数的概念,掌握反比例函数性质。对与这样两个目标,我们的学生要想十分熟练,也比较困难,我们就像在用三等马与别人的上等马在赛跑。但是,由于目标少,起点低,也可以比较系统的分层地掌握好两个目标。现在看,效果还是不错的。
2、抓住一个知识点做足变式。对于反比例函数的一般形式:y=k/x(k≠0),其主要考点有两个,一个是利用一般形式给出一点,求出准确的表达式;另一个就是考察k≠0的应用。同时还有两个变式:k=xy和y=kx—1,
第一个变式非常重要,容易结合图像在坐标系内构成矩形或三角形,比较面积的大小。实际就是k=xy的应用。我把这个问题分成6种情况,分别结合图示,由浅入深展示给学生,学生在环环相扣螺旋上升的问题面前没有退缩,也没有放弃,而是饶有兴趣的解决了问题。我感觉非常成功。也给了我十分的信心和动力,支撑我在今后备课过程中,不断思索如何才能让学生学到今天这个程度。
3、性质教学,紧紧抓住关键词语,突破难点。性质强调“在同一象限内”,而我们学生往往忽略这个问题,无论是怎样的两点,都直接用性质,对此,我用讨论的观点,也是螺旋上升出现问题,结合图像观察,让学生看到理解到:在同一象限内可直接用性质,不在同一象限内,一、二象限的点的纵坐标永远大于三、四象限内点的纵坐标。这样,非常明了的让学生把最容易混淆的知识分清了。
第9篇:九年级《反比例函数》说课稿
常见的错误:
(1)没有注意定义中的条件;弱视题设条件;
(2)思考不全面,造成漏解、误解;
(3)根据函数图形性质判断函数图像在坐标系中位置,系数与图像的位置关系不容易判断;
(4)抛物线与x轴的交点数由决定,而学生不易把此知识点与一元二次方程联系起来应用;
为了减少因审题不当,而出现错误解答,在复习时,我们要求学生,在读题时让学生把关键字词化着重记号。
例1:已知一次函数的图像与y轴的交点为(0,-4),求m
错解:将坐标(0,-4)代入函数解析式,得,解之得m=1或m=2.
错误原因:上述解法没有紧扣一次函数定义中“”这一条件,当m=2时,m-2=0,此时函数就不是一次函数,故应舍去。
正解:m=1
例2:当x为何值时,函数与x轴只有一个交点?
典型错误原因:因为函数与x轴只有一个交点,所以=0,即4+4m=0,解得m=-1.
错因分析:认为必是二次函数,忽略了m=0这种情形。
正确答案:因为函数与x轴只有一个交点,所以m=0或=0,解得m=0或m=-1.
总结:(1)正确判断函数的类型;
(2)注意各种函数的`条件;
(3)注意理解题意,把关键字词作标示,引起学生解题时注意,答题时全面考虑问题;
本文由用户 chener 上传分享,若有侵权,请联系我们(点这里联系)处理。如若转载,请注明出处:http://wenku.52yushi.com/wz5350.html