消元法解二元一次方程组说课稿,是指教师在讲述如何用消元法解二元一次方程组的一种教学方案和讲稿。消元法解二元一次方程组是数学中的一个重要内容,它对于培养学生的数学思维和解决实际问题具有重要意义。以下是有关于消元法解二元一次方程组说课稿的有关内容,欢迎大家阅读!
第1篇:消元法解二元一次方程组说课稿
各位评委老师:
大家好!今天我说课的题目是人教版七年级数学下册第八章《消元——二元一次方程组的解法》第一课时。
一、教材分析
1、教材的地位与作用:本节内容是在学生掌握了二元一次方程方程组的有关概念之后讲授的,用代入消元法解二元一次方程方程组是学生接触到的解方程组的第一种方法,消元体现了化未知为已知的重要思想。它是本章学习的重点和难点,也为解决现实问题提供了方便,同时为以后学习函数、线性方程组以及高次方程组奠定了基础。
2、教学目标:根据新课标要求以及学生的认知水平,我确定了如下了三维教学目标:
(1)知识与技能:
①会用代入法解二元一次方程组;
②能初步体会代入法解二元一次方程组的基本思想—“消元”。
(2)过程与方法:
①培养学生基本的运算技巧和能力;
②培养学生观察、比较、分析、综合能力,以及运用旧知识解决新问题的能力。
(3)情感、态度、价值观:鼓励学生积极主动的参与整个“教”与“学”的过程,通过研究解决问题的方法,培养学生的合作交流意识与探索精神。
3、教学重点、难点:
重点:会用代入法解二元一次方程组。
难点:在“消元”的过程中能够判断消去哪个未知数,使得解方程组的运算转为较简便。探索如何用代入法将“二元”转化为“一元”的消元过程。
二、教法与学法
根据七年级学生的思维能力较单一,教学学习活动中归纳能力较差这一特点,本节课主要采取“探究发现式”教学方法,在教学过程中,采用“问题——实践——交流合作——说理——练习”的教学流程。老师对学生在课堂中表现予以帮助与评价,鼓励学生积极主动地参与教学过程。在探索、交流中获取新知。对于学生最重要的是让他们学会学习,因此教学中主要采用了教师引导学生动手实践,自主探索与合作交流的学习方法,在学习过程中充分调动学生从事数学活动的时间和空间,让学生乐于思考、勤于动手,自主的交流与合作,在实践中掌握解二元一次方程组的方法,从面获得新知。使每一个学生都能得到充分的发展。
三、教学过程
第一环节:创设情境,导入新课
引例:篮球联赛中,化育节要到了,蓝球是初一(1)班的拳头项目,为了取得好名次,他们想在全部22场比赛中得到40分。已知每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,那么初一(1)班胜负场数分别是多少?
设置问题:
(1)问题中有几个未知数?
(2)若设胜X场,如何列出一元一次方程求解?
(3)若设胜X场,负的为Y场,列出的二元一次方程组又是什么?
(4)列出来的一元一次方程我们会解,那么又如何去解这个二元一次方程组呢?
问题(2)和(3)让两个学生上黑板列出方程并解方程(1),而问题(3)让学生列出方程组即可,最后一问有意设置矛盾,让学生处于积极思维状态,但一时又难以给出正确的答案。从而引出本节课题:消元。
(通过问题引起学生注意,同时把学生带入新课的学习情境中,刺激学生对身边发生的问题所蕴含的数学知识的兴趣,注重数学来源于生活的理念.通过创设问题情境自然地揭示新课课题,激发学生求知欲望,同时为本节课的学习打下了良好的思想基础)
第二环节:师生合作,探究新知
问题1:因为胜负场数和是22场,所列的方程除了X+Y=22外还有其他哪种形式?
在学生回答出Y=22—X和X=22—Y,教师接着提问;由这个二元一次方程组
x+y=22①
2x+y=40②
能不能得到方程2X+(22—X)=38?如何得到?提出问题后,将学生分成小组讨论,教师深入学生的讨论中,引导学生观察。例如:从设未知数表示数量关系的角度或从二元一次方程组与一元一次方程的结构上观察。学生通过对比观察体会到一元一次方程与二元一次方程组之间的联系,学生回答后,马上暴露知识发生过程:(1)Y=22—X
(2)用22—X替换方程2X+Y=40中的Y,即把Y=22—X代入2X+Y=40
问题2:
(1)这时,方程组转变为什么方程?哪个未知数的值可以先求出来?从哪里求?问题解完了吗?
(2)另一个未知数的值如何求?引导学生回答以上问题后,师生共同完成解答过程,并将结果与前面列一元一次方程求出的结果对照。
(通过问题的提出,给学生提供从事数学活动的机会,激发学生思考,体现数学知识的形成与过程,引导学生观察、比较,分析问题,鼓励学生思考、合作与交流,有利于学生理解与掌握相关知识与方法,形成良好的数学思维习惯。
通过演示,提出问题,让学生积极地动脑、动手、动口。在教师的引导下,学生通过观察、分析、比较并积极思考解决问题的方法,有助于学生理解和掌握由二元一次方程组化为一元一次方
程的过程,从而明确消元思想——由二元化为一元——由未知化为已知。)
第三环节:师生合作,发现规律
结论:这种将“二元”转化为“一元”的思想方法,我们称为消元法(并板书课题),在消元法中我们消去一个未知数,消元是我们解方程组的关键。进而提示:我们是如何消元的?引导学生去发现,把一个方程中的某一个未知数用另一个未知数表示后代入另一个方程,消去一个未知数,这种消元法我们称之为代入消元法。
(这样归纳后,学生对解方程组的思路就会较清晰,能够顺利地实现目标,同时也会对这种方法表现极大兴趣)
第四环节:典例分析,规范步骤
让学生自学课本97页例1,规范解题步骤,然后根据云图中提出的问题积极思考明确问题答案,此环节的目的是为了培养学生良好的自学习惯,体现学生的学习活动。然后教师提出问题:
①方程组是如何变形的?还有其他变形方法吗?
②将已求出的未知数的值代入哪一个方程解出另一个未知数更简便呢?
③你能先求出的值吗?
③何检验你求出的结果是否正确?
(通过提出这一系列的问题,使学生对代入消元法解二元一次方程组的步骤更加明确。通过另一种解法,让学生体会一题多解,从而达到举一反三的目的。选择适当变形方式,使运算简便。其目的是让学生意识到代入消元法有时可消去x有时可消去y。目的是为了培养学生良好的检验习惯。)
第五环节:熟练技能,升华提高
要求学生练习课本98页第一题(再加一问,用含的代数式表示,体会哪一种表示方法更为简便)。第2题采用学生板演,学生自我批改的形式。在掌握了本节课知识点的基础之上,完成当堂达标测试题。
第六环节:归纳小结,布置作业
1、从本节课中你学到了解二元一次方程组的哪种方法?其基本思想是什么?主要步骤有哪些?要求同学之间互相交流讨论。
2、必做题课本103页
选做题课本99页3,4
(作业分必做和选做是为了在巩固本节所学知识的前提下,考虑不同学生的需求。)
四、板书设计
8.2消元——二元一次方程组的解法(一)
Y=4
Y=22—x
变形
设胜了x场,负y场,x+y=22①代入
2x+y=40②
设胜了x场,则负
(22—x)场,则消元
2x+(22—x)=40③x=18(说明:由于此编辑窗口不能插入线条,所以图示中没有带箭头的线条,请谅解。)
五、时间分配
1、创设情景,引入新课(5分)2、师生合作,探求新知(10分)
3、师生合作,发现规律(3分)4、典例分析,规范步骤(10分)
5、熟练技能,升华提高(10分)6、归纳小结,作业布置(2分)
六、设计说明
本节课教学按照“身边的数学问题引入——寻求一元一次方程的解法——探索二元一次方程组的解法(代入消元法)——典型例题——归纳代入法”的思路进行设计。在教学过程中,充分调动学生的学习积极性,重视知识的发生过程,让学生认知内化,形成能力。将设未知数求一元一次方程的过程与解二元一次方程组的过程进行比较,在复习旧知识的同时获的新知,取得了良好的教学效果。
第2篇:消元法解二元一次方程组说课稿
各位评委、老师:
大家好!
我是来自丁庄镇中心初中的王红。今天我说课的内容是人教版义务教育课程标准实验教科书《数学》七年级下册,第八章第二节《二元一次方程组的解法》第一课时代入消元法。
下面我从教材分析、教学方法、学法指导、教学过程、教学感想这五个方面汇报我对这节课的教学设想。
一、教材分析
教材的地位和作用
本节主要内容是在上一节已学习了二元一次方程(组)和二元一次方程(组)的解的概念的基础上,来学习解方程组的第一种方法——代入消元法。并初步体会解二元一次方程组的基本—-“消元”。二元一次方程组的求解,用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面利用方程组来解决实际问题打下了基础。
2、教学目标
根据本课教材的特点、课程标准对本节课的教学要求、学生的身心发展的合理需要,我从三个不同的方面确立了以下教学目标:
(1)知识技能目标:1)会用代入法解二元一次方程组
2)初步体会解二元一次方程组的基本—-消元
(2)能力目标:通过对方程组中未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,由未知向已知的转化,培养观察能力和体会化规。通过用代入消元法解二元一次方程组的训练,培养运算能力。
(3)情感目标:通过研究解决问题的方法,培养学生合作交流意识与探究。
3、重点、难点
根据学生的认知特点,我确立了本节课的重难点。
重点:用代入消元法解二元一次方程组
难点:探索如何用代入法将“二元”转化为“一元”的消元过程。
为了突出重点、突破难点,让学生动手操作,积极参与并主动探索解题方法,我设计并制作了多媒体课件,帮助学生理解代入消元法。
成功的教学必须选择合适的教法和学法,因此我确定如下教法和学法:
二、教学方法
我采用了探究式教学方法,设疑思考、点拨启发、小组探究、逐步深入。
三、学法指导
我采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。
四、
1、根据以上分析,我设计了以下六个教学环节:
2、教学过程
下面我就每一个教学环节,具体介绍我对本节课的教学设想。
环节一:创设情境
活动一:出示引例:我校举办“奥运杯”篮球联赛,每场比赛都要分出胜负,胜1场得2分,负1场得1分,我班篮球队为了取得好名次,想在全部22场比赛中得40分,那么我班篮球队胜负场数应分别是多少?
学生活动:列方程或方程组解决问题
教师关注:学生是否能够多角度地考虑问题.
设计意图:创设问题情景,让学生从生活中发现数学问题,激发学生的学习兴趣。
环节二、尝试发现
活动二:小组探究:能否将二元一次方程组转化为一元一次方程进而求得方程组的解呢?
学生活动:小组探究二元一次方程组的解法,初步体验解二元一次方程的步骤。
教师关注:学生思维角度是否合理,学生是否能抓住问题的核心部分。
设计意图:在学生小组讨论的过程中充分从事数学活动的机会,从而激发学生的学习积极性,体会在解决问题的过程中,与他人合作的重要性。
活动三:小组展示
学生活动:分小组针对老师给出的题目,展示解二元一次方程组的方法。
教师关注:关注:学生用语言表达自己的观点的准确性与全面性。
设计意图:在学生小组展示的过程中,要让学生尽情发挥,这样才能因材施教。发展学生有条理思考问题的能力和表达能力。
活动四:再看转化、把握解题技巧
学生活动:观察转化过程中的技巧,并尝试。
设计意图:转化是解方程组的重要环节,也是提高解题速度和正确度的关键,在这里探讨,帮助学生更好的掌握代入消元法。
环节三、小组闯关
活动五:闯关练习一,解二元一次方程组,分小组竞争过关比例。
学生活动:做练习题
教师关注:学生解题的步骤的完整性,和解题的正确并及时的纠正错误
设计意图:掌握用代入消元法解方程组的一般过程,会解二元一次方程组并体会消元的。
活动六:闯关练习二,给出一个利用二元一次方程组解决的实际问题,拓展学生的思维。
学生活动:独立完成本题。
设计意图:在前面学习解二元一次方程组的基础上,提出实际问题,发展学生得多角度思维能力。
环节四、拓展升华
活动七:出示例题2.
学生活动:先独立思考,在同学之间交流一下想法,然后解决问题。
教师关注:学生是否可以找到等量关系,列出方程组,解方程组。
设计意图:通过用方程组解决实际问题,培养学生运用代入消元法解方程组的技能和分析问题,解决问题的能力。达到将所学知识进一步升华的目的。
环节五:反思
活动八:我有哪些收获?
学生活动:学生归纳
教师关注:
(1)学生是否养成归纳、的好习惯;
(2)学生是否全面理解并掌握了本节课的知识。
环节六、布置作业
1、必做题:
P103第2题⑵⑷,第4题
2、选做题:
设计意图:分层次,选择作业题,有利于学有余力的学生的发展。
最后我以著名数学家笛卡尔的一句话结束这节课。
五、板书设计
8.2二元一次方程组的解法
—-代入消元法
1、二元一次方程组一元一次方程
2、代入消元法的一般步骤:
3、方法:转化、消元、方程(组).
六、教学感想
在教学过程中,我始终:
坚持一个原则——教为主导,学为主体
坚守一个理念——先学后教,以学定教
贯穿一个——享受数学,快乐学习
以上是我对本节课的理解,有不当之处尽请各位老师批评指正。谢谢!
我的说课到此结束,谢谢大家
第3篇:消元法解二元一次方程组说课稿
一、说教材分析
1.教材的地位和作用
二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。
2.教学目标
知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。
能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。会在实际问题中列二元一次方程组。
情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。
3.重点、难点
重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。
难点:在实际生活中二元一次方程组的应用。
二、教法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。
另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。
三、学法
“问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。
四、教学过程
新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1)复习旧知,温故知新
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?
设计意图:构建注意主张教学应从学生已有的`知识体系出发,方程是本节课深入研究二元一次方程组的认知基础,这样设计有利于引导学生顺利地进入学习情境。
(2)创设情境,提出问题
这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?
由问题知道,题中包含两个必须同时满足的条件:
胜的场数+负的场数=总场数,胜场积分+负场积分=总积分。
这两个条件可以用方程
x+y=22
2x+y=40
表示:
上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.
把两个方程合在一起,写成
x+y=22
2x+y=40
像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。
设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。
(3)发现问题,探求新知
满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中。
本文由用户 chener 上传分享,若有侵权,请联系我们(点这里联系)处理。如若转载,请注明出处:http://wenku.52yushi.com/wz5345.html