小学数学基础的知识点 小学数学知识点总结

数学,这门充满智慧和奥秘的学科,从小学阶段就为孩子们打下了坚实的基础。对于许多小学生来说,数学或许是枯燥的,复杂的,但实际上,它是一门充满趣味和挑战的学科。通过掌握小学数学基础的知识点,学生们可以开启对数字、形状和空间的认知之旅,为未来的数学学习铺设坚实的基石。

小学数学基础的知识点 小学数学知识点总结

第1篇:小学数学基础的知识点-数量关系式

每份数×份数=总数

总数÷每份数=份数

总数÷份数=每份数

倍数×倍数=几倍数

几倍数÷1 倍数=倍数

几倍数÷倍数= 1 倍数

速度×时间=路程

路程÷速度=时间

路程÷时间=速度

单价×数量=总价

总价÷单价=数量

总价÷数量=单价

工作效率×工作时间=工作总量

工作总量÷工作效率=工作时间工

作总量÷工作时间=工作效率

加数+加数=和

和-一个加数=另一个加数

被减数-减数=差

被减数-差=减数

差+减数=被减数

因数×因数=积

积÷一个因数=另一个因数

被除数÷除数=商

被除数÷商=除数

商×除数=被除数

第2篇:小学数学基础的知识点-定义定理性质公式

1、加法交换律:两数相加交换加数的位置,和不变。

2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

3、乘法交换律:两数相乘,交换因数的位置,积不变。

4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5

6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 0除以任何不是0的数都得0。

简便乘法:被乘数、乘数末尾有0的乘法,可以先把0前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。

7、什么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。

等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。

8、什么叫方程式?答:含有未知数的等式叫方程式。

9、 什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。

学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。

10、分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。

11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。

15、分数除以整数(0除外),等于分数乘以这个整数的倒数。

16、真分数:分子比分母小的分数叫做真分数。

17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。

18、带分数:把假分数写成整数和真分数的形式,叫做带分数。

19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

20、一个数除以分数,等于这个数乘以分数的倒数。

21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

第3篇:小学数学基础的知识点-数学图形计算公式

1、正方形(C:周长S:面积a:边长)

周长=边长×4 C=4a

面积=边长×边长S=a×a

2、正方体(V:体积a:棱长)

表面积=棱长×棱长×6

S 表=a×a×6

体积=棱长×棱长×棱长

V=a×a×a

3、长方形( C:周长S:面积a:边长)

周长=(长+宽) ×2

C=2(a+b)

面积=长×宽

S=ab

4、长方体(V:体积s:面积a:长b: 宽h:高)

(1)表面积(长×宽+长×高+宽×高) ×2

S=2(ab+ah+bh)

(2)体积=长×宽×高V=abh

5、三角形(s:面积a:底h:高)

面积=底×高÷2 s=ah÷2

三角形高=面积×2÷底

三角形底=面积×2÷高

6、平行四边形(s:面积a:底h:高)

面积=底×高s=ah

7、梯形(s:面积a:上底b:下底h:高)

8、圆形(S:面积C:周长л d=直径r=半径)

(1)周长=直径×л=2×半л径× C=лd=2лr

(2)面积=半径×半径×л

9、圆柱体(v:体积h:高s:底面积r:底面半径c:底面周长)

(1)侧面积=底面周长×高=ch(2лr或лd)

(2)表面积=侧面积+底面积×2

(3)体积=底面积×高

(4)体积=侧面积÷2×半径

10、圆锥体(v:体积h:高s:底面积r:底面半径)

体积=底面积×高÷3

11、总数÷总份数=平均数

12、和差问题的公式

(和+差) ÷2=大数(和-差) ÷2=小数

13、和倍问题

和÷(倍数- 1)=小数小数×倍数=大数(或者和-小数=大数)

14、差倍问题

差÷(倍数- 1)=小数小数×倍数=大数(或小数+差=大数)

15、相遇问题

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

16、浓度问题

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量

17、利润与折扣问题

利润=售出价-成本

利润率=利润÷成本×100%= (售出价÷成本- 1) ×100%

涨跌金额=本金×涨跌百分比

利息=本金×利率×时间

税后利息=本金×利率×时间×(1-20%)

第4篇:小学数学基础的知识点-运算定律及简便运算

一、加法运算定律:

1、加法交换律:两个数相加,交换加数的位置,和不变。a+b=b+a

2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c)

加法的这两个定律往往结合起来一起使用。

如:165+93+35=93+(165+35)依据是什么?

3、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。a-b-c=a-(b+c)

二、乘法运算定律:

1、乘法交换律:两个数相乘,交换因数的位置,积不变。a×b=b×a

2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。(a×b)×c=a×(b×c)

乘法的这两个定律往往结合起来一起使用。如:125×78×8的简算

3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这个数相乘,再把积相加。

(a+b)×c=a×c+b×c (a-b)×c=a×c-b×c

小学四年级奥数学习方法

1、抓住课堂。数学学习重在平日功夫,不适于突击复习。平日学习最重要的是课堂40分钟,听讲要聚精会神,思维紧跟老师。同时要说明一点,许多同学容易忽略老师所讲的数学思想、数学方法,而注重题目的解答,其实思想方法远远重要于某道题目的解答。

2、高质量完成作业。所谓高质量是指高正确率和高速度。写作业时,有时同一类型的题重复练习,这时就要有意识的考查速度和准确率,并且在每做完一次时能够对此类题目有更深层的思考,诸如它考查的内容,运用的数学思想方法,解题的规律、技巧等。另外对于老师布置的思考题,也要认真完成。如果不会决不能轻易放弃,要发扬“钉子”精神,一有空就静心思考,灵感总是突然来到你身边的。最重要的是,这是一次挑战自我的机会。成功会带来自信,而自信对于学习数学十分重要;即使失败,这道题也会给你留下深刻的印象。

3、勤思考,多提问。首先对于老师给出的概念、规律,不仅要知“其然”还要“知其所以然”,做到刨根问底,这便是理解的途径。其次,学习任何学科都应抱着怀疑的态度,尤其是数学。对于老师的讲解,课本的内容,有疑问应尽管提出,与老师讨论。总之,思考、提问是清除学习隐患的途径。

4、总结比较,理清思绪。

(1)知识点的总结比较。每学完一个单元都应将本章内容做以整理或在脑中过一遍,理顺出它们的关系。对于相似易混淆的知识点应分项归纳比较,有时可用联想法将其区分开。

(2)题目的总结比较。同学们可以建立自己的题库。我就有两本题集。一本是错题,一本是精题。对于平时作业,考试出现的错题,有选择地记下来,并用红笔在一侧批注注意事项,考试前只需翻看红笔写的内容即可。我还把见到的一些极其巧妙或难度高的题记下来,也用红笔批注此题所用方法和思想。时间长了,自己就可总结出一些类型的解题规律,也用红笔记下这些规律。最终它们会成为你宝贵的财富,对你的数学学习有极大的帮助。

5、认真地做课外练习。课余时间对我们小学生来说是十分珍贵的,所以在做课外练习时要准而精,只要每天认真地做三两页,天长日久,你的数学学习就可以做到“积沙成塔”,收获丰硕。

第5篇:小学数学基础的知识点-单位换算

长度单位换算

1 千米=1000 米

1 米=10 分米

1 分米=10 厘米

1 米=100 厘米

1 厘米=10 毫米

面积单位换算

1 平方千米=100 公顷

1 公顷=10000 平方米

1 平方米=100 平方分米

1 平方分米=100 平方厘米

1 平方厘米=100 平方毫米

体(容)积单位换算

1 立方米=1000 立方分米

1 立方分米=1000 立方厘米

1 立方分米=1 升

1 立方厘米=1 毫升

1 立方米=1000 升

重量单位换算

1 吨=1000 千克

1 千克=1000 克

1 千克=1 公斤

人民币单位换算

1 元=10 角

1 角=10 分

1 元=100 分

第6篇:小学数学基础的知识点-容积

什么是容积?

容积:是指容器所能容纳物体的体积。

单位:固体的容积单位与体积单位相同,而液体和气体的容积单位一般用升、毫升。

容积和体积是两个不同的概念,它们是有区别的:

1、含义不同。如一只铁桶的体积是指它所占空间部分的大小,而这只铁桶的容积却是指它容纳物体的多少。一种物体有体积,可不一定有容积。

2、测量方法不同。在计算物体的体积或容积前一般要先测量长、宽、高,求物体的体积是从该物体的外部来测量,而求容积却是从物体的内部来测量。一种既有体积又有容积的封闭物体,它的体积一定大于它的容积。

3、单位名称不完全相同。体积单位一般用:立方米、立方分米、立方厘米;固体的容积单位与体积单位相同,而液体和气体的体积与容积单位一般都用升、毫升。

4.一个物体的体积应该比容积要大。

5.公式:

V长方体=abc(长× 宽× 高)

V正方体=a^3(棱长× 棱长× 棱长)

V圆柱=sh(底面积×高)

V圆锥=1/3sh(1/3×底面积×高)

6.计量液体的体积,如水、油等,常用容积单位升和毫升,也可以写成L和ml

7.计算不规则的立体图形体积可以把这个物体放入水中。用现在容积-未放入物体的容积就是体积或用放入物体后高-未放入物体__长__宽(1升=1立方分米;1毫升=1立方厘米)

8.硬盘的容量是以MB(兆)和GB(千兆)为单位的

第7篇:小学数学基础的知识点-时间单位换算

1 世纪=100 年

1 年=12 月

大月(31 天)有:1\3\5\7\8\10\12 月

小月(30 天)的有:4\6\9\11 月

平年2 月28 天,

闰年2 月29 天

平年全年365 天,

闰年全年366 天

1 日=24 小时

1 时=60 分

1 分=60 秒

1 时=3600 秒

第8篇:小学数学基础的知识点-体积

什么是体积?

体积:用来表示物体所占空间的大小,叫做体积。

体积换算

1 立方厘米=1 毫升

1 立方英寸=16.387 立方厘米

1 立方分米=1000 立方厘米

1 立方分米=0.061 立方英寸

1 立方英尺=28.3 立方分米

1 立方米=1000 立方分米

1 立方米=1.3079 立方码

1 立方码=27 立方英尺

1 立方码=0.7646 立方米

第9篇:小学数学基础的知识点-数和数的运算

一概念

(一)整数

1 整数的意义

自然数和0 都是整数。

2 自然数

我们在数物体的时候,用来表示物体个数的1,2,3⋯⋯ 叫做自然数。

一个物体也没有,用0 表示。0 也是自然数。

3 计数单位

一(个)、十、百、千、万、十万、百万、千万、亿⋯⋯ 都是计数单位。

每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。

4 数位

计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。

5 数的整除

整数 a 除以整数 b(b ≠ )0,除得的商是整数而没有余数,我们就说 a 能被 b整除,或者说b 能整除a 。

如果数a 能被数b(b ≠ 0)整除, a 就叫做b 的倍数, b 就叫做a 的约数(或a的因数)。倍数和约数是相互依存的。

因为35 能被7 整除,所以35 是7 的倍数, 7 是35 的约数。

一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。例如:10 的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。

一个数的倍数的个数是无限的, 其中最小的倍数是它本身。3 的倍数有:3、6、9、12⋯⋯其中最小的倍数是3 ,没有最大的倍数。

个位上是0、2、4、6、8 的数,都能被2 整除,例如:202、480、304,都能被2整除。。

个位上是0 或5 的数,都能被5 整除,例如:5、30、405 都能被5 整除。。

一个数的各位上的数的和能被3 整除,这个数就能被3 整除,例如:12、108、204都能被3 整除。

一个数各位数上的和能被9 整除,这个数就能被9 整除。

能被3 整除的数不一定能被9 整除,但是能被9 整除的数一定能被3 整除。

一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256 都能被4 整除, 50、325、500、1675 都能被25 整除。

一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344 都能被8 整除, 1125、13375、5000 都能被125 整除。

能被2 整除的数叫做偶数。

不能被2 整除的数叫做奇数。

0 也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。

一个数,如果只有1 和它本身两个约数,这样的数叫做质数(或素数) ,100 以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

一个数,如果除了1 和它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、12 都是合数。

1 不是质数也不是合数,自然数除了1 外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。

每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3 和5 叫做15 的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

例如把28 分解质因数几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12 的约数有1、2、3、4、6、12;18 的约数有1、2、3、6、9、18。其中, 1、2、3、6 是12 和1 8 的公约数, 6 是它们的最大公约数。

公约数只有1 的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:

1 和任何自然数互质。

相邻的两个自然数互质。

两个不同的质数互质。

当合数不是质数的倍数时,这个合数和这个质数互质。

两个合数的公约数只有1 时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。

如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。

如果两个数是互质数,它们的最大公约数就是1。

几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2 的倍数有2、4、6 、8、10、12、14、16、18 ⋯⋯

3 的倍数有3、6、9、12、15、18 ⋯⋯ 其中6、12、18⋯⋯是2、3 的公倍数, 6是它们的最小公倍数。。

如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。

如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。

几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。

(二)小数

1 小数的意义

把整数1 平均分成10 份、100 份、1000 份⋯⋯ 得到的十分之几、百分之几、千分之几⋯⋯ 可以用小数表示。

一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几⋯⋯

一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。

在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

2 小数的分类

纯小数:整数部分是零的小数,叫做纯小数。例如:0.25 、0.368 都是纯小数。

带小数:整数部分不是零的小数,叫做带小数。例如:3.25 、5.26 都是带小数。

有限小数:小数部分的数位是有限的小数, 叫做有限小数。例如:41.7 、25.3 、0.23 都是有限小数。

无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.33 ⋯⋯

3.1415926 ⋯⋯

无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:Π

循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.555 ⋯⋯ 0.0333 ⋯⋯ 12.109109 ⋯⋯

一个循环小数的小数部分, 依次不断重复出现的数字叫做这个循环小数的循环节。

例如:3.99 ⋯⋯的循环节是 “ 9 ”, 0.5454 ⋯⋯的循环节是 “ 54 ”。

纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。例如:

3.111 ⋯⋯ 0.5656 ⋯⋯

混循环小数:循环节不是从小数部分第一位开始的, 叫做混循环小数。3.1222 ⋯⋯0.03333 ⋯⋯

写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有一个数字,就只在它的上面点一个点。例如:3.777 ⋯⋯ 简写作0.5302302 ⋯⋯ 简写作。

(三)分数

1 分数的意义

把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。

在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”

平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

2 分数的分类

真分数:分子比分母小的分数叫做真分数。真分数小于1。

假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。

带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

3 约分和通分

把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。

分子分母是互质数的分数,叫做最简分数。

把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

(四)百分数

1 表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。

百分数通常用”%” 来表示。百分号是表示百分数的符号。

二 方法

(一)数的读法和写法

1. 整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的

读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0 都不读出来,其它数

位连续有几个0 都只读一个零。

2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,

就在那个数位上写0。

3. 小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,

小数部分从左向右顺次读出每一位数位上的数字。

4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。

5. 分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。

6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。

7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。

8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。

(二)数的改写

一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。

有时还可以根据需要,省略这个数某一位后面的数,写成近似数。

1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或

亿为单位的数。改写后的数是原数的准确数。例如把1254300000 改写成以万做

单位的数是125430 万;改写成以亿做单位的数12.543 亿。

2. 近似数:根据实际需要, 我们还可以把一个较大的数, 省略某一位后面的尾数,

用一个近似数来表示。例如:1302490015 省略亿后面的尾数是13 亿。

3. 四舍五入法:要省略的尾数的最高位上的数是4 或者比4 小,就把尾数去掉;

如果尾数的最高位上的数是5 或者比5 大,就把尾数舍去,并向它的前一位进1。

例如:省略345900 万后面的尾数约是35 万。省略4725097420 亿后面的尾数约是47 亿。

4. 大小比较

1. 比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。

2. 比较小数的大小:先看它们的整数部分, ,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大⋯⋯

3. 比较分数的大小:分母相同的分数, 分子大的分数比较大;分子相同的数, 分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。

(三)数的互化

1. 小数化成分数:原来有几位小数,就在1 的后面写几个零作分母,把原来的小

数去掉小数点作分子,能约分的要约分。

2. 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,

不能化成有限小数的,一般保留三位小数。

3. 一个最简分数,如果分母中除了2 和5 以外,不含有其他的质因数,这个分数

就能化成有限小数;如果分母中含有2 和5 以外的质因数,这个分数就不能化成

有限小数。

4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。

5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。

(四)数的整除

1. 把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。

2. 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1 为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。

3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。

4. 成为互质关系的两个数:1 和任何自然数互质;相邻的两个自然数互质;当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公约数只有1时,这两个合数互质。

(五) 约分和通分

约分的方法:用分子和分母的公约数( 1 除外)去除分子、分母;通常要除到得出最简分数为止。

通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

三 性质和规律

(一)商不变的规律

商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不

变。

(二)小数的性质

小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。

(三)小数点位置的移动引起小数大小的变化

1. 小数点向右移动一位,原来的数就扩大10 倍;小数点向右移动两位,原来的

数就扩大100 倍;小数点向右移动三位,原来的数就扩大1000倍⋯⋯

2. 小数点向左移动一位,原来的数就缩小10 倍;小数点向左移动两位,原来的

数就缩小100 倍;小数点向左移动三位,原来的数就缩小1000倍⋯⋯

3. 小数点向左移或者向右移位数不够时,要用“0″补足位。

(四)分数的基本性质

分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外) ,分数

的大小不变。

(五)分数与除法的关系

1. 被除数÷除数= 被除数/除数

2. 因为零不能作除数,所以分数的分母不能为零。

3. 被除数相当于分子,除数相当于分母。

第10篇:小学数学基础的知识点-平行线

什么是平行线?

平行线:在同一平面内,永不相交的两条直线叫平行线(parallel lines),平行线具有传递性。

平行线的判定方法

1.平行线的定义(在同一平面内,不相交的两条直线叫做平行线。)

2.平行公理推论:平行于同一直线的两条直线互相平行。

3.在同一平面内,垂直于同一直线的两条直线互相平行。

4.内错角相等,两直线平行。

5.同旁内角互补,两直线平行。

6.同位角相等,两直线平行

平行线的性质

1.两条平行线被第三条直线所截,同位角相等

2.两条平行线被第三条直线所截,内错角相等

3.两条平行线被第三条直线所截,同旁内角互补

4. 两条平行线被第三条直线所截,外错角相等

以上性质可简单说成:

1.两条直线平行,同位角相等

2.两条直线平行,内错角相等

3.两条直线平行,同旁内角互补

4.两条直线平行,外错角相等

平行公理:

在同一平面内,经过直线外一点,有且只有一条直线与这条直线平行。

平行公理的推论:(平行传递性)

如果两条直线都和第三条直线平行,那么这两条直线也互相平行。即平行于同一条直线的两条直线平行。

经过直线外一点,有且只有一条直线与这条直线平行。

小学数学基础的知识点是构建数学知识体系的重要基石。无论是简单的加减乘除,还是对图形的初步认识,这些都是数学学习的基石。只有牢牢掌握这些知识点,学生们才能更好地理解更高级的数学概念,从而在数学的道路上走得更远。让我们一起努力,为孩子们的数学学习之路添砖加瓦。

本文由用户 jining 上传分享,若有侵权,请联系我们(点这里联系)处理。如若转载,请注明出处:http://wenku.52yushi.com/wz2299.html

(0)
jiningjining
上一篇 2024年1月9日
下一篇 2024年1月9日

相关推荐

发表回复

登录后才能评论