数学,作为高中阶段的一门重要学科,不仅在高考中占有举足轻重的地位,更是我们日常生活中解决问题的重要工具。大家好,今天我将为大家带来一份高中数学知识归纳大全。
第1篇:高中数学知识归纳大全
一、自变量x和因变量y有如下关系:
y=kx+b
则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)
二、一次函数的性质:
1、y的变化值与对应的x的变化值成正比例,比值为k
即:y=kx+b(k为任意不为零的实数b取任何实数)
2、当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:
1、作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)
2、性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3、k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点;
当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。作者:花花小于https://www.bilibili.com/read/cv17205058/出处:bilibili
第2篇:高中数学知识归纳大全
1、柱、锥、台、球的结构特征
(1)棱柱:
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台
几何特征:
①上下底面是相似的平行多边形
②侧面是梯形
③侧棱交于原棱锥的顶点
(4)圆柱:
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
几何特征:
①底面是全等的圆;
②母线与轴平行;
③轴与底面圆的半径垂直;
④侧面展开图是一个矩形。
(5)圆锥:
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。
几何特征:
①底面是一个圆;
②母线交于圆锥的顶点;
③侧面展开图是一个扇形。
(6)圆台:
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:
①上下底面是两个圆;
②侧面母线交于原圆锥的顶点;
③侧面展开图是一个弓形。
(7)球体:
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:
①球的截面是圆;
②球面上任意一点到球心的距离等于半径。
3、空间几何体的三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)
注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
4、空间几何体的直观图——斜二测画法
斜二测画法特点:
①原来与x轴平行的线段仍然与x平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半。作者:花花小于https://www.bilibili.com/read/cv17205058/出处:bilibili
第3篇:高中数学知识归纳大全
一、圆及圆的相关量的定义
1、平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。
2、圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。
3、顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
5、直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
6、两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
7、在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。
二、有关圆的字母表示方法
圆–⊙;半径—r;弧–⌒;直径—d
扇形弧长/圆锥母线—l;周长—C;面积—S三、有关圆的基本性质与定理(27个)
1、点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):
P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO
2、圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。
3、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4、在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别等等。
5、一条弧所对的圆周角等于它所对的圆心角的一半。
6、直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
7、不在同一直线上的3个点确定一个圆。
8、一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。
9、直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距离):
AB与⊙O相离,PO>r;AB与⊙O相切,PO=r。
10、圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。
11、圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):外离P>R+r;外切P=R+r;相交R-r
三、有关圆的计算公式
1、圆的周长C=2πr=πd
2、圆的面积S=s=πr2
3、扇形弧长l=nπr/180
4、扇形面积S=nπr2/360=rl/2
5、圆锥侧面积S=πrl
四、圆的方程
1、圆的标准方程
在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是:
(x-a)^2+(y-b)^2=r^2
2、圆的一般方程
把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是:
x^2+y^2+Dx+Ey+F=0
和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2
相关知识:圆的离心率e=0。在圆上任意一点的曲率半径都是r。
五、圆与直线的位置关系判断
平面内,直线Ax+By+C=O与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是
讨论如下2种情况:
(1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],
代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。
利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:
如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离
(2)如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴)
将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2
令y=b,求出此时的两个x值x1,x2,并且我们规定x1
当x=-C/Ax2时,直线与圆相离
当x1
当x=-C/A=x1或x=-C/A=x2时,直线与圆相切
圆的定理:
1、不在同一直线上的三点确定一个圆。
2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论
1、①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
2、圆的两条平行弦所夹的弧相等
3、圆是以圆心为对称中心的中心对称图形
4、圆是定点的距离等于定长的点的集合
5、圆的内部可以看作是圆心的距离小于半径的点的集合
6、圆的外部可以看作是圆心的距离大于半径的点的集合
7、同圆或等圆的半径相等
8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
10、推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
11、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
12、①直线L和⊙O相交d
②直线L和⊙O相切d=r
③直线L和⊙O相离d>r
13、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线
14、切线的性质定理:圆的切线垂直于经过切点的半径
15、推论1经过圆心且垂直于切线的直线必经过切点
16、推论2经过切点且垂直于切线的直线必经过圆心
17、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
18、圆的外切四边形的两组对边的和相等外角等于内对角
19、如果两个圆相切,那么切点一定在连心线上
20、①两圆外离d>R+r
②两圆外切d=R+r
③两圆相交R-rr)
④两圆内切d=R-r(R>r)
⑤两圆内含dr)
21、定理:相交两圆的连心线垂直平分两圆的公共弦
22、定理:把圆分成n(n≥3):
(1)依次连结各分点所得的多边形是这个圆的内接正n边形
(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
23、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
24、正n边形的每个内角都等于(n-2)×180°/n
25、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
26、正n边形的面积Sn=pnrn/2,p表示正n边形的周长
27、正三角形面积√3a/4,a表示边长
28、如果在一个顶点周围有k个正n边形的角,这些角的和应为360°
29、弧长计算公式:L=n兀R/180
30、扇形面积公式:S扇形=n兀R^2/360=LR/2
31、内公切线长=d-(R-r)外公切线长=d-(R+r)
32、定理:一条弧所对的圆周角等于它所对的圆心角的一半
33、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
34、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
35、弧长公式l=a*r,a是圆心角的弧度数r>0,扇形面积公式s=1/2*l*r作者:花花小于https://www.bilibili.com/read/cv17205058/出处:bilibili
第4篇:高中数学知识归纳大全
空间两条直线只有三种位置关系:平行、相交、异面
1、按是否共面可分为两类:
(1)共面:平行、相交
(2)异面:
异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)esp。空间向量法。
两异面直线间距离:公垂线段(有且只有一条)esp空间向量法。
2、若从有无公共点的角度看可分为两类:
(1)有且仅有一个公共点——相交直线;
(2)没有公共点——平行或异面
直线和平面的位置关系:
直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行。
①直线在平面内——有无数个公共点。
②直线和平面相交——有且只有一个公共点。
直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
第5篇:高中数学知识归纳大全
一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性.
3、集合的表示:(1){?}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(2).用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}4
.集合的表示方法:列举法与描述法。
常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R
5.关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A
列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表
示某些对象是否属于这个集合的方法。6、集合的分类:
(1).有限集含有有限个元素的集合(2).无限集含有无限个元素的集合
(3).空集不含任何元素的集合例:{x|x2=-5}=Φ
二、集合间的基本关系
1.“包含”关系—子集注意:A?B有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集?B或B??A合A不包含于集合B,或集合B不包含集合A,记作A?
2.“相等”关系:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
①任何一个集合是它本身的子集。即A?A
②如果A?B,且A?B那就说集合A是集合B的真子集,记作A B(或BA)
③如果A?B,B?C,那么A?C④如果A?B同时B?A那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。三、集合的运算
1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.
记作A∩B(读作"A交B"),即A∩B={x|x∈A,且x∈B}.
2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作"A并B"),即A∪B={x|x∈A,或x∈B}.
3、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,
A∪φ=A,A∪B=B∪A.
4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即A?S),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作:CSA即CSA={x?x?S且x?A}
(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,看作一个全集。通常用U来表示。
(3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U二、函数的有关概念
合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的`一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.
能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(7)实际问题中的函数的定义域还要保证实际问题有意义.
2.构成函数的三要素:定义域、对应关系和值域
再注意:(1)由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)
3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A?B为从集合A到集合B的一个映射。记作“f:A?B”
给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象
说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。
5.常用的函数表示法:解析法:图象法:列表法:
6.分段函数在定义域的不同部分上有不同的解析表达式的函数。(1)分段函数是一个函数,不要把它误认为是几个函数;
(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.7.函数单调性(1).设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间d上是增函数。区间d称为y=f(x)的单调增区间<p=””>
如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间d称为y=f(x)的单调减区间.<p=””>
注意:函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;
(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法
(A)定义法:○1任取x1,x2∈D,且x1<x2;○2作差f(x1)-f(x2);○3变形(通常是因式分解和配方);○4定号(即判断差f(x1)-f(x2)的正负);○5下结论(指出函数f(x)在给定的区间d上的单调性).(b)图象法(从图象上看升降)_注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.<p=””>
8.函数的奇偶性
(1)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
(2).一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.
注意:○1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。
2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,○
则-x也一定是定义域内的一个自变量(即定义域关于原点对称).(3)具有奇偶性的函数的图象的特征
偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
总结:利用定义判断函数奇偶性的格式步骤:○1首先确定函数的定义域,并判断其定义域是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.9、函数的解析表达式
(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.
(2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)。
补充不等式的解法与二次函数(方程)的性质
第6篇:高中数学知识归纳大全
直线、平面、简单多面体
1、计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算
2、计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解。注:一斜线与平面上以斜足为顶点的角的两边所成角相等斜线在平面上射影为角的平分线。
3、空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用。注意:书写证明过程需规范。
4、直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质。
如长方体中:对角线长,棱长总和为,全(表)面积为,(结合可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式),
如三棱锥中:侧棱长相等(侧棱与底面所成角相等)顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直)顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内顶点在底上射影为底面内心。
5、求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等。注意:补形:三棱锥三棱柱平行六面体
6、多面体是由若干个多边形围成的几何体。棱柱和棱锥是特殊的多面体。
正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种,即正四面体、正六面体、正八面体、正十二面体、正二十面体。
7、球体积公式。球表面积公式,是两个关于球的几何度量公式。它们都是球半径及的函数。
十、导数
1、导数的意义:曲线在该点处的切线的斜率(几何意义)、瞬时速度、边际成本(成本为因变量、产量为自变量的函数的导数,C为常数)
2、多项式函数的导数与函数的单调性
在一个区间上(个别点取等号)在此区间上为增函数。
在一个区间上(个别点取等号)在此区间上为减函数。
3、导数与极值、导数与最值:
(1)函数处有且“左正右负”在处取极大值;
函数在处有且左负右正”在处取极小值。
注意:①在处有是函数在处取极值的必要非充分条件。
②求函数极值的方法:先找定义域,再求导,找出定义域的分界点,列表求出极值。特别是给出函数极大(小)值的条件,一定要既考虑,又要考虑验“左正右负”(“左负右正”)的转化,否则条件没有用完,这一点一定要切记。
③单调性与最值(极值)的研究要注意列表!
(2)函数在一闭区间上的最大值是此函数在此区间上的极大值与其端点值中的“最大值”
函数在一闭区间上的最小值是此函数在此区间上的极小值与其端点值中的“最小值”;
注意:利用导数求最值的步骤:先找定义域再求出导数为0及导数不存在的的点,然后比较定义域的端点值和导数为0的点对应函数值的大小,其中最大的就是最大值,最小就为最小。
第7篇:高中数学知识归纳大全
直线和圆
1、直线倾斜角与斜率的存在性及其取值范围;直线方向向量的意义(或)及其直线方程的向量式((为直线的方向向量))。应用直线方程的点斜式、斜截式设直线方程时,一般可设直线的斜率为k,但你是否注意到直线垂直于x轴时,即斜率k不存在的情况?
2、知直线纵截距,常设其方程为或;知直线横截距,常设其方程为(直线斜率k存在时,为k的.倒数)或知直线过点,常设其方程为。
(2)直线在坐标轴上的截距可正、可负、也可为0。直线两截距相等直线的斜率为—1或直线过原点;直线两截距互为相反数直线的斜率为1或直线过原点;直线两截距绝对值相等直线的斜率为或直线过原点。
(3)在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的两条直线可以理解为它们不重合。
3、相交两直线的夹角和两直线间的到角是两个不同的概念:夹角特指相交两直线所成的较小角,范围是。而其到角是带有方向的角,范围是
4、线性规划中几个概念:约束条件、可行解、可行域、目标函数、最优解。
5、圆的方程:最简方程;标准方程;
6、解决直线与圆的关系问题有“函数方程思想”和“数形结合思想”两种思路,等价转化求解,重要的是发挥“圆的平面几何性质(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等)的作用!”
(1)过圆上一点圆的切线方程
过圆上一点圆的切线方程
过圆上一点圆的切线方程
如果点在圆外,那么上述直线方程表示过点两切线上两切点的“切点弦”方程。
如果点在圆内,那么上述直线方程表示与圆相离且垂直于(为圆心)的直线方程,(为圆心到直线的距离)。
7、曲线与的交点坐标方程组的解;
过两圆交点的圆(公共弦)系为,当且仅当无平方项时,为两圆公共弦所在直线方程。
第8篇:高中数学知识归纳大全
有界性
设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界.
单调性
设函数f(x)的定义域为D,区间I包含于D.如果对于区间上任意两点x1及x2,当x1f(x2),则称函数f(x)在区间I上是单调递减的.单调递增和单调递减的函数统称为单调函数.
奇偶性
设为一个实变量实值函数,若有f(—x)=—f(x),则f(x)为奇函数.
几何上,一个奇函数关于原点对称,亦即其图像在绕原点做180度旋转后不会改变.
奇函数的例子有x、sin(x)、sinh(x)和erf(x).
设f(x)为一实变量实值函数,若有f(x)=f(—x),则f(x)为偶函数.
几何上,一个偶函数关于y轴对称,亦即其图在对y轴映射后不会改变.
偶函数的例子有|x|、x2、cos(x)和cosh(x).
偶函数不可能是个双射映射.
连续性
在数学中,连续是函数的一种属性.直观上来说,连续的函数就是当输入值的变化足够小的’时候,输出的变化也会随之足够小的函数.如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。
第9篇:高中数学知识归纳大全
一、平面的基本性质与推论
1、平面的基本性质:
公理1如果一条直线的两点在一个平面内,那么这条直线在这个平面内;
公理2过不在一条直线上的三点,有且只有一个平面;
公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
2、空间点、直线、平面之间的位置关系:
直线与直线—平行、相交、异面;
直线与平面—平行、相交、直线属于该平面(线在面内,最易忽视);
平面与平面—平行、相交。
3、异面直线:
平面外一点A与平面一点B的连线和平面内不经过点B的直线是异面直线(判定);
所成的角范围(0,90)度(平移法,作平行线相交得到夹角或其补角);
两条直线不是异面直线,则两条直线平行或相交(反证);
异面直线不同在任何一个平面内。
求异面直线所成的角:平移法,把异面问题转化为相交直线的夹角
二、空间中的平行关系
1、直线与平面平行(核心)
定义:直线和平面没有公共点
判定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)
性质:一条直线和一个平面平行,经过这条直线的.平面和这个平面相交,则这条直线就和两平面的交线平行
2、平面与平面平行
定义:两个平面没有公共点
判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行
性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
3、常利用三角形中位线、平行四边形对边、已知直线作一平面找其交线
三、空间中的垂直关系
1、直线与平面垂直
定义:直线与平面内任意一条直线都垂直
判定:如果一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直
性质:垂直于同一直线的两平面平行
推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面
直线和平面所成的角:【0,90】度,平面内的一条斜线和它在平面内的射影说成的锐角,特别规定垂直90度,在平面内或者平行0度
2、平面与平面垂直
定义:两个平面所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线所成的角)
判定:一个平面过另一个平面的垂线,则这两个平面垂直
性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直
第10篇:高中数学知识归纳大全
1.求函数的单调性:
利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数.
利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间.
反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,
(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);
(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的’x值不构成区间);
(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立.
2.求函数的极值:
设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值).
可导函数的极值,可通过研究函数的单调性求得,基本步骤是:
(1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的变化情况:
(4)检查f(x)的符号并由表格判断极值.
3.求函数的值与最小值:
如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的值.函数在定义域内的极值不一定,但在定义域内的最值是的.
求函数f(x)在区间[a,b]上的值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;
(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的值与最小值.
4.解决不等式的有关问题:
(1)不等式恒成立问题(绝对不等式问题)可考虑值域.
f(x)(xA)的值域是[a,b]时,
不等式f(x)0恒成立的充要条件是f(x)max0,即b0;
不等式f(x)0恒成立的充要条件是f(x)min0,即a0.
f(x)(xA)的值域是(a,b)时,
不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0.
(2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0.
5.导数在实际生活中的应用:
实际生活求解(小)值问题,通常都可转化为函数的最值.在利用导数来求函数最值时,一定要注意,极值点的单峰函数,极值点就是最值点,在解题时要加以说明.
以上就是我为大家整理的高中数学知识归纳大全。希望这份归纳能为大家在学习数学的过程中提供帮助,使大家能够更清晰地理解和掌握数学知识。记住,学习数学是一个需要不断练习和实践的过程,希望大家能够在理解的基础上,多做练习,提高自己的数学水平。
本文由用户 liing, liing 上传分享,若有侵权,请联系我们(点这里联系)处理。如若转载,请注明出处:http://wenku.52yushi.com/wz540.html